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Abstract—The classification of human activities in real-time is
an essential task of Human Activity Recognition (HAR). For the
deployment of HAR systems on devices like smartphones and
smartwatches, it is crucial to ensure their efficiency in terms of
time and space. Within the realm of human activity classification,
a specific focus lies on the categorization of ambulatory activities,
including walking, jogging, and ascending and descending stairs.
Activity shapelets, which are geometric patterns representing the
dominant pattern in ambulation, are extracted and used for
accurate and efficient classification of an incoming time series
signal from mobile devices. A trade-off must be made between an
extensive training period for extracting shapelets tailored to each
individual and the deployment of shapelets trained on a broader
population at the expense of accuracy. We propose a novel
approach for activity shapelet creation using gait cycle averaging,
coupled with a method to partition subjects into training clusters
based on biometric similarity. A systematic improvement in
accuracy is shown when classifying activity data by leveraging
biometric partitioning compared to randomly assigned training
clusters. Our findings demonstrate that our methods can be used
to deploy pre-trained shapelet libraries, eliminating the need for
expensive individual training while maintaining high accuracy.

Index Terms—Classification, Time Series, Human Activity
Recognition, Activity Shapelets, Machine Learning, Clustering,
Biometrics

I. INTRODUCTION

Accurate and resource-efficient classification systems are

necessary for the practical and pervasive use of human ac-

tivity recognition (HAR) by users. Real-time HAR methods

often employ wearable sensors to enable unobtrusive analysis

and activity recognition in open environments. These sensors

facilitate the capture of relevant data for comprehensive and

context-aware activity classification. The ubiquity of sensors in

devices like smartwatches and smartphones has revolutionized

activity recognition by obviating the necessity for users to wear

supplementary devices [1]. Triaxial accelerometers, which are

pervasive in these devices, present a favorable foundation for

real-time classification due to their information-rich nature

and ability to generate a time series signal. Leveraging these

sensors makes the challenge of real-time human activity clas-

sification a variant of the real-time time series classification

task.

One common method of real-time time series classifica-

tion is the use of time series shapelets - concise geometric

representations of the common pattern in a time series. Such

approaches are popular due to their simplicity and efficiency,

as a shapelet library can be deployed, and a matching al-

gorithm can run in real-time. Shapelet-based approaches to

classification were first proposed in [2] and have been a topic

of immense interest owing to their accuracy and speed. Time

series shapelet extraction typically involves two key com-

ponents: candidate extraction and search. The conventional

approach involves windowed candidate extraction, where a

fixed window is slid along the time series, and exhaustive

pairwise comparisons are performed during search, to identify

potential shapelets. Numerous methods have been proposed to

accelerate the shapelet extraction and search problem [3], [4],

[5]. These approaches are often focused on either extracting

fewer candidates or avoiding computation during search.

Human activity is variable and susceptible to various

sources of noise. Each individual exhibits distinct patterns

while performing activities, introducing interpersonal variabil-

ity. Additionally, the uncertainty and unpredictability of the

surrounding environment contribute to random variations in

movement patterns. Training systems on individual subjects

can yield high accuracy in activity classification, but this ap-

proach typically incurs a substantial training cost for each in-

dividual. An alternative approach involves training systems on

a population of subjects, which offers advantages in terms of

cost and scalability. However, this approach involves a trade-

off, resulting in reduced accuracy and precision compared to

individual-specific models. For instance, [6] presents a system

able to achieve 94% accuracy when trained on individuals, but

only 56% accuracy when trained on a population. This tradeoff

is particularly salient for exhaustive shapelet approaches to

HAR classification, as a shapelet candidate that is selected as

the most representative, on average, of a population, may not

be generalizable to subjects whose activity data the shapelet

did not come from.

Hierarchical classification systems, as proposed in [7] offer

resource-efficient approaches to online classification, avoiding

expensive classification tasks when unnecessary. Our work

focuses on the classification of ambulatory activities. Am-

bulatory activities are cyclical, offering natural segmentations

based on the gait phase cycle. We envision our system being

used within a hierarchical classification system, first identi-

fying that ambulation is occurring, and using our methods
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to sub-classify which ambulatory activity. To the best of our

knowledge, [8] is the only other study that has employed a sim-

ilar time series shapelet approach for real-time classification of

human activity. The focus of their work is on the classification

and analysis of individual subjects, utilizing stepped candidate

extraction and exhaustive pairwise comparison of shapelet

candidates. The use of an exhaustive shapelet search makes

this work subject to the aforementioned dilemma between

generalizability and accuracy. Consequently, there is no direct

comparison between our methods and others in this context.

The major contributions of our paper include an extension of

the work presented in [8] by proposing an alternative method

for activity shapelet extraction using gait cycle averaging.

This novel approach addresses a key challenge encountered by

other shapelet-based methods when dealing with training data

from multiple subjects. Second, to avoid the training time for

each individual, a biometric heuristic is used for partitioning

training data before shapelet extraction. This allows common

activity shapelets to be used between people with similar

biometric profiles, following the basic intuition that a person’s

gait pattern is influenced by their physical characteristics.

Compared to similar approaches that train on individuals,

our method, trained on a population, approaches comparable

accuracy for real-time activity classification.

The organization of the rest of the paper is as follows:

we first give an overview of the data collection protocols

and population sample (Section 2). We will then present the

biometric partitioning process for delineating subjects into

training clusters (Section 3), followed by a detailed explana-

tion of the shapelet extraction and training method (Sections

4 & 5). Section 6 will describe our experiment to show an

empirical account of the accuracy of our system. Finally, we

will conclude with a summary of our contributions, limitations,

and directions for future work.

II. OVERVIEW

To improve upon the classification pipeline, a process for

partitioning data based on biometrics is presented. Our par-

titioning system consists of a two-step process. First, a set

of biometric data is clustered for each subject, to partition

subjects into training clusters. Second, for each partition,

times-series activity shapelets are extracted from each activity.

The output of the process is a shapelet library for each training

cluster, relating to the biometric characteristics of a subject. A

shapelet library can be deployed in an online system to classify

in real-time, as they are very space efficient. Each shapelet in

the library is scored against an incoming signal, and the results

are passed through a multi-layer perceptron to provide a final

multiclass activity label output.

A. Data Collection

Many HAR datasets contain extensive activity data, or

separately, extensive biometrics data. To address the question

of the impact the biometrics have on ambulatory activities,

and subsequently online classification, it was imperative for

us to gather comprehensive activity data, complemented by

subject-level biometrics information.

In our study, 35 subjects (20 female, 15 male) had biomet-

rics samples taken. A total of 15 numerical biometrics and

an additional 10 qualitative metrics were assessed. Table I

shows brief sample statistics from our data collection of the

biometrics in the analysis (excluding sex).

TABLE I
SAMPLE STATISTICS

Features Avg. Std. Dev.

Age 28 12.0
Height (cm) 171 10.5
Weight (kg) 66 13.5
Dominant Leg Length (cm) 98 7.7
Shoe Size (US) 9 1.8

Subjects wore three wearable sensors (ActiGraph GT9X

Link1) to collect triaxial accelerometer data (100 Hz, ± 16 g)

for a series of 5 activities, on the non-dominant hip, the non-

dominant lower shank, and on the non-dominant wrist. Each

subject walked on the sidewalk for a set distance, walked up

and down a set of stairs, walked on the treadmill at 2.5 mph

for 2 minutes, and jogged on the treadmill at 5.5 mph for 1

minute. The analysis is focused on the hip-worn accelerometer.

The source code and our full dataset are available [9], [10]

B. Activity Data

From the trivariate time series signal created by the ac-

celerometer, the vector magnitude of the acceleration is cre-

ated.

vt =
√
x2
t + y2t + z2t (1)

This improves the robustness of our data against the orientation

of the sensor and allows us to easily incorporate information

from all three axes while keeping our data as a simple

univariate time series.

Fig. 1. Eight seconds of sidewalk walking from waist sensor of participant
001.

1ActiGraph, LLC, Pensacola, FL, https://theactigraph.com/
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Activity data, a = (v1, v2, ..., vT ), as shown in Figure

1, is a time series representation of the vector magnitude

of acceleration, where T is the number of discrete samples,

sampled at 100hz.

III. BIOMETRIC PARTITIONING INTO TRAINING CLUSTERS

Fig. 2. Overview of the Biometric Partitioning Process

Partitioning our dataset allows us to create more specific

shapelet libraries, while still avoiding the individual training

period. Subjects are partitioned into training clusters according

to biometric similarity.

Clustering is used to identify the similarities present in our

subjects’ biometrics. Set B = {�b1, �b2, ..., �bN} is created where

each �bn is a vector containing a set of biometrics pertaining to

subjectn. Centroids M = { �m1, �m2, ..., �mK}, are initialized

by randomly sampling the set B, K times. B is clustered with

inertia defined as the sum of the squared distances between

each �bn and the centroid �mk of its assigned cluster Ck. The

goal of the clustering algorithm is to minimize the cluster

inertia - the distance between each instance sn and the centroid

mk of its assigned cluster Ck.

inertia =

N∑
n=1

K∑
k=1

I( �bn ∈ Ck)| �bn − �mk|2 (2)

Where N is the number of subjects, K is the number of

clusters, and I takes on the value of 1 if �bn is a member

of cluster Ck, and a value of 0 otherwise. KMeans is used to

update centroids and assign membership of each �bn to a cluster

Ck according to Lloyd’s algorithm [11]. The initial centroids

are resampled 5 times and return the cluster assignment and

centroid set that results in the minimum inertia.

The cluster assignment that results from the clustering

process is used to partition the data into K training clusters.

Figure 2 provides a visual overview of the biometric partition-

ing process.

IV. ACTIVITY SHAPELET EXTRACTION

For each subjectn in training cluster k, and for each activity

a, a stepped window of a set length is iterated over the activity

data. Resampling is done by randomly initializing the starting

point until an adequate and fixed number of subsequences

are obtained from each person and activity. The final training

dataset, for shapelet extraction of training cluster k, consists of

a 1-dimensional concatenation of our bootstrapped sampling.

Minimal preprocessing is applied to retain the scale of

the extracted shapelets, ensuring their inherent characteristics

remain intact. By minimizing preprocessing steps during the

training phase, we aim to reduce the computational burden

imposed on the real-time classifier during online classification.

First, the training activity data a = (v1, v2, ..., vT ) is smoothed

using a moving average

vt =
1

p

t+p∑
i=t

vi (3)

Where p is the smoothing period maintained as a hyperparam-

eter.

Second, each activity data sequence is centered on the

median, which brings the gravitational constant to zero.

a = a−
{
γ[T+1

2 ] if T is odd
γ[T2 ]+γ[T2 +1]

2 if T is even
(4)

Where γ is our activity data, a, reindexed in monotone

increasing order, and T is the number of samples.

A. Gait Cycle Extraction

Fig. 3. Peak-finding for gait event detection captures the whole gait cycle
from heel-strike to toe-off of the dominant leg.
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A gait comprises sequential cycles separated by gait events,

most notably the heel-strike, and toe-off [12]. The data was

collected in a controlled environment, and labeled by our

researchers, therefore a simple, rule-based algorithm is used

to extract gait cycles. A peak-finding algorithm, PeakUtils,

is used to detect gait events. Figure 3 illustrates the peaks

identified by PeakUtils on activity data highlighted in red.
A library of candidate subsequences is created, Ca =

{c1, c2, ..., cL} where cl is a gait cycle extracted from the

peak-indexing algorithm, and a denotes the activity and L is

the number of gait cycles.

B. Gait Cycle Averaging
Barycenter averaging is used to find the spatiotemporal

sequence that minimizes the distance between a set of time se-

ries. Barycenter averaging allows us to incorporate information

from each training subject into the final activity shapelet. As

opposed to conducting an exhaustive search, which necessarily

selects a shapelet from one individual, barycenter averaging

can be trained on a population of subjects. This provides

advantages in the generalizability of activity shapelets and

allows pre-trained shapelets to be deployed on mobile devices.

Fig. 4. Above: gait cycle candidate library. Below: an activity shapelet,
highlighted in red, created by finding the interpolated average of the candidate
library.

DTW Barycenter Averaging (DBA) was proposed in [13],

and Soft DTW Barycenter Averaging was proposed in [14].

A simple barycenter averaging technique we call interpolated

averaging follows two steps. Given the candidate library

Ca = {c1, c2, ..., cL}, the mean length, μ is found, and each

candidate, cl, is interpolated to a create a vector, �cl, of length

μ. Subsequently, the set of vectors is averaged to obtain a

representative value.

shapeleta =
1

L

L∑
l=1

�cl (5)

where �cl ∈ R
μ. Figure 4 shows an example of interpolated

averaging on a gait cycle candidate library. The choice of

this method over others is motivated by its notable ad-

vantages in terms of simplicity and speed. To enhance the

general applicability of DBA, averaging techniques are often

employed. Through empirical evaluation of various methods

on our dataset, notable enhancements are observed when

compared to non-smoothed DBA. Furthermore, our findings

demonstrate comparable outcomes between smoothed DBA

and interpolated averaging techniques. Figure 4 demonstrates

the interpolated averaging technique on our gait cycle candi-

date library.

Figure 5 shows the final activity shapelets to be deployed for

real-time classification. For each shapelet in each libraryk, the

shapelet is repeated so it fits in a window size of four seconds

Fig. 5. Library of all activity shapelets for jogging (orange), walking on the
treadmill (purple), walking on the sidewalk (red), upstairs (green), downstairs
(blue), and mixed-surface walking (black).

Each shapelet library, libraryk = {s1, s2, ..., sA} consists

of an activity shapelet, sa, for each activity a, where A is

the number of activities performed by subjects, and K is the

number of training clusters.

V. CLASSIFICATION

Here a real-time multi-class classification system with mu-

tually exclusive categories is presented, that is intended to

be used for online HAR systems. A scheme is described

for providing a continuous real-time activity classification

based on the prior set period of incoming activity data. The

system scores each shapelet in the shapelet library against the
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incoming activity data signal and passes the scores through a

multi-layer perceptron for a multi-class output.

Fig. 6. The classification pipeline scores each activity shapelet against the
incoming signal. The vector containing the score of each activity’s shapelet is
passed as input to a neural network which gives a multiclass output of activity
label.

As presented by formulas (3) and (4), incoming data is

smoothed using a moving average and center the data on the

median. This step holds significant importance for real-time

analysis because our system is trained on a group of subjects

as a whole, rather than individually.

For comparing two cyclical time series, such as ambulatory

activity data, the synchronization of phases in the cycle

becomes crucial. The use of certain spatiotemporal distance

metrics, such as Dynamic Time Warping, provides some

measure of robustness against distortions in time, but another

measure is necessary when dealing with incoming signals that

may be completely out of phase. The synchronization of our

activity shapelets is achieved through our peak finding and gait

cycle extraction process. This synchronization ensures that the

shapelets are aligned in terms of their phases. To match the

incoming signal with the phase of our activity shapelets, again

the peak-finding algorithm, PeakUtils is used. The second peak

is identified by our algorithm and a subsequencss starting

from that point is extracted to the same length as the activity

shapelets. This extracted subsequence is then used for scoring

purposes.

Dynamic Time Warping (DTW) is a spatiotemporal distance

metric used for measuring similarity between time series,

especially if the time series is distorted in time [15]. DTW

has also been used for gait analysis [12] in other applica-

tions. Given an incoming phase-synced activity data signal,

a = {v1, v2, ..., vT }, and our shapelet library libraryk =
{s1, s2, ..., sA}, a vector is constructed representing the DTW

score of each barycenter in our library compared to the

incoming signal.

�S = DTW (a, libraryk) (6)

�S is then passed as input into a simple multi-layer perception

(MLP), using the Python library, Sci-Kit Learn. The MLP

consists of a single, fully-connected hidden layer with 10

neurons. The Rectified Linear Unit (ReLU) activation function

is applied within this hidden layer, along with stochastic

gradient descent optimization, with a constant learning rate

of 0.001. Consequently, this configuration yields our ultimate

multiclass output, which consists of the activity labels. It is

noteworthy that when implementing the model, the size of the

hidden layer should be adjusted according to the number of

activities, denoted as A. Figure 6 demonstrates the shapelet

scoring and classification process.

VI. ANALYSIS AND RESULTS

To evaluate the performance of our classification method,

stratified k-fold cross-validation is employed. Three training

and testing splits are conducted and the average accuracy from

these splits serves as the final performance measure. When

assessing the accuracy of the partitioning, we average the

results obtained from all the partitions. For calculating the

overall accuracy, the accuracy score function provided by Sci-

Kit Learn’s library is utilized.

A crucial element in the development of a real-time activity

classification system is the accurate identification of instances

where a subject is engaged in an activity that has not been

trained on. To comprehensively evaluate and validate our sys-

tem, we incorporate a counterfactual scenario. For determining

when a subject is performing an activity the system does not

recognize, the system is trained on a Gaussian distribution

of vector magnitude, with the mean and standard deviation

being derived from the training dataset to provide plausible

counterfactual activity data. The addition of this random

element assesses the system’s ability to correctly distinguish

trained activities from non-trained activities. It’s important to

note that the inclusion of this data modestly improves the

overall accuracy of our system.

A. Biometric Partitioning

By partitioning our data based on biometrics, training, and

validation will occur on a smaller subject population. As a

result, a concomitant improvement in performance is expected.

To avoid spurious results by assessing the performance of

this smaller group, the performance improvement of a dataset

trained on partitions made by biometric clustering is compared

to a randomly partitioned dataset of similar size.
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TABLE II
BIOMETRIC PARTITIONING IMPROVEMENTS OVER RANDOM

PARTITIONING

Features Accuracy Improvement

Age, Sex 0.85 5.4%
Age, Shoe Size 0.85 5.3%
Sex, Weight 0.84 4.8%
Age 0.84 4.6%
Age, Shoe Size, Height 0.84 4.3%
Age, Sex, Shoe Size 0.84 4.1%
Age, Sex, Shoe Size, Height 0.83 3.7%
Age, Height 0.83 3.7%
Age, Sex, Height 0.83 3.6%

For simplification, K = 3 number of training clusters is

used, as many biometric subsets tend to create three natural

clusters. Partitioning by biometrics creates a 1.3% systematic

improvement of accuracy over random partitioning across all

biometric sets. It’s important to note that this includes sets of

biometrics that provide worse than random partitioning results,

and there is a heterogeneous effect of biometric partitioning on

performance, according to the significance of the biometrics

on the gait cycle. An improvement of over 5% is seen

among select biometric sets. Table II, shows the performance

improvement of the most impactful biometrics.

Upon analyzing Table II;, it becomes evident that age

plays a substantial role in the gait pattern. Specifically, when

partitioning the data based solely on age, there is a notable

improvement of 4.6% compared to random partitioning. This

finding suggests age as a significant contributing factor in gait

pattern analysis.

B. Efficacy of Different Classification Tasks
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Fig. 7. Accuracy of Multiclass Classification of all Activities - Comparison
of Different Training Populations

Here the full account of the accuracy of a system using bio-

metric partitioning is provided. The overall multiclass classifi-

cation of all activities and some common binary classifications

of interest.

Figure 7 demonstrates the difference between training our

system on our full sample population of 35 subjects, training

on random partitions, and biometric partitions for K = 3
training clusters.

As expected, as the size of the training cluster decreases, the

accuracy tends to increase. However, by comparing training

clusters created by biometric partitioning to those created by

random partitioning, biometric partitioning generates superior

results.

Figure 8 reports the accuracy of several different classifica-

tion tasks. As was mentioned earlier, one common approach

to online activity classification is hierarchical binary classifi-

cations. For this reason, we show the accuracy of our system

in classifying whether a subject is walking or jogging, and, if

walking, whether they are walking on a treadmill or walking

on the sidewalk.
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Once again, biometric partitioning generates a significant

improvement over random partitioning. Moreover, taking Ta-

ble II, Figure 7, and Figure 8 together, this shows that the

simplicity of the biometrics that resulted in the most significant

improvements demonstrates that systematic improvements can

be made with very little input from the user. Age, sex, and shoe

size are all characteristics a user knows without the necessity

of measurement. Weight and height are additional biometrics

that are commonly known.
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In their experiments [8] achieved an accuracy level of

approximately 86.5% by exclusively training and testing on

six individuals. In comparison, our system achieved an 85%

accuracy when trained and tested on a population of individ-

uals. This comparison clearly demonstrates the effectiveness

of our system in developing pre-trained and generalizable

Human Activity Recognition (HAR) systems. Our approach

allows us to train a single system on a population, rather than

individually for each person, while still achieving comparable

accuracy to systems trained on individual subjects.

C. Limitations

Our work primarily focuses on Dynamic Time Warping

(DTW) as the sole scoring metric. However, alternative metrics

like Euclidean distance, cross-correlation, or approximations

of DTW can be employed and examined. Furthermore, the

inclusion of additional scoring metrics in our final MLP

model could potentially enhance accuracy at the expense of

an increase in computational requirements. Further work can

be done to validate our methods for sensor independence

using smartphones or other types of accelerometers and mobile

devices. Our dataset is limited by the need for subject-level

biometrics data, but given our findings, other suitable datasets

may be used for validation based only on biometrics such as

age and sex.

VII. CONCLUSION

The classification of ambulatory activities is an essential

task of human activity recognition. Activity shapelets have

been established as a resource-efficient method for real-time

classification, but are faced with a tradeoff between the ex-

pensive process of training on individuals, or losing accuracy.

To address these issues we offer two solutions. First, we

propose gait cycle averaging as an activity shapelet technique,

to allow systems to train on a population and deploy shapelet

libraries to mobile devices. Second, we show that creating

training clusters based on biometric similarity generates sys-

tematically better shapelets, in excess of randomly partitioned

training clusters. Our results suggest that, with minimal input

from users, a system may be trained and deployed for the

classification of ambulatory activities in real-time on mobile

devices. This opens up possibilities for the pervasive use of

HAR systems that are efficient and accurate.
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