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Abstract—An important field within Human Activity Recog-
nition is the evaluation of disease and patient recovery through
the assessment of gait patterns. Clustering has been used as a
data-mining technique to find the prior patterns in subjects’ gait
patterns. Previous studies have shown the discriminative power of
gait clustering on biometrics, and the ability to detect abnormal
gait patterns and gait pathology. Previous techniques have relied
on expensive machinery and closed environments for gait pattern
extraction and/or simplistic featured approaches to clustering.
Geometric time series clustering has developed in other fields
as a method for incorporating the information from an entire
time series sequence and comparing sequences with temporal
distortions. We present a method for geometric gait clustering
using accelerometer data from wearable sensors. Our methods
include an approach to gait cycle averaging and a two-way
clustering method for assessing the similarity of biometrics within
gait cycle clusters. Our results demonstrate that our methods
have significant discriminative efficacy for biometrics and may
be a useful analytical tool for gait pathology.

Index Terms—gait analysis, clustering, DTW, KMeans, ma-
chine learning, wearable sensors, gait pathology

I. INTRODUCTION

Human Activity Recognition (HAR) is the classification
and analysis of human activity by machines. The ubiquity
of sensors in devices like smartwatches and smartphones has
revolutionized activity recognition by obviating users’ need
to wear supplementary devices [1]. Triaxial accelerometers,
which are pervasive in these devices, present a favorable
foundation for real-time analysis due to their information-
rich nature and ability to generate a time series signal. Gait
analysis, which is a subset of HAR, has been widely employed
in the fields of patient recovery and disease assessments
[2], [3], [4], [5]. It is well established that gait patterns are
influenced by various physical characteristics [6], [7].

Clustering is a data-mining technique employed to reveal
the underlying relationships within a dataset. In the context of
gait analysis, various methods have been deployed to cluster
human gait patterns. These methods have been successfully
applied in the detection of gait pathology as well as disease
detection and prevention efforts [8], [9]. Other methods can be
characterized in two main ways; first, featured approaches with
manual extraction of features from the gait of subjects, and
second, using computer vision for the detection of gait patterns
and gait events from image recognition. [10] Presents gait

clustering from several different gait detection methods, and
can identify distinct biometric characteristics between clusters
based on gait patterns. To do further analysis on the impact
of biometrics on gait patterns, we combine accelerometer-
based activity data with more complete subject biometrics
data. Moreover, in contrast to [10], which is focused solely
on the K = 5 and K = 10 number of clusters, we extend
our analysis by reporting results for a broader range of cluster
numbers, specifically K = 2, 3, 4, 5.

In other domains, time series clustering techniques have
been employed to classify instances into clusters using spa-
tiotemporal similarity [11]. Geometric approaches to time
series clustering differ from feature-based approaches by con-
sidering the entire time series information instead of extracting
specific features. However, to the best of our knowledge, the
application of geometric time series clustering has not been
previously explored in the context of clustering human gait
patterns.

This study presents a system designed to untangle the
influence of biometrics on gait patterns using accelerometer
data captured by wearable devices. Our approach involves
extracting gait patterns through peak detection for gait cycle
identification and employing barycenter cycle averaging for
gait cycle alignment. Our analysis follows a two-step proce-
dure; first, we cluster based on the geometric shapes of the gait
pattern for every subject. Second, we cluster the biometrics of
each subject. Finally, we compare the cluster assignments of
both steps to identify similar assignments of subjects to the
same cluster. We use a within-sample probability assessment to
measure the significance of our results. Our findings demon-
strate that assigning subjects to clusters based on shapelets
shows a considerable improvement over a random assignment,
which illustrates the influence of biometrics on gait cycle
patterns.

Our methods show discriminative power that replicates
other studies. We assess the most impactful biometrics, and
we find significant inter-cluster distinctions for subjects with
past anterior cruciate ligament (ACL) reconstruction surgery.
These results indicate that our methods hold promise for other
researchers in analyzing gait pathology and monitoring patient
recovery, all while leveraging the unobtrusive nature of a hip-
worn accelerometer.
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II. METHODS

A. Data Collection

35 subjects (20 female, 15 male) wore three wearable
sensors (ActiGraph GT9X) to collect triaxial accelerometer
data (100 Hz, ± 16 g) for a series of five activities. Five
subjects had prior ACL injuries. Subjects wore a sensor on
their non-dominant wrist, one around their waist attached to
an elastic belt on their non-dominant hip, and one on their
non-dominant ankle. Each subject walked on the sidewalk
for 90 meters, climbed up and down three flights of stairs,
walked on the treadmill at 2.5 mph for two minutes, and
jogged on the treadmill at 5.5 mph for one minute. For our

TABLE I
SAMPLE STATISTICS

Features Avg. Std. Dev.

Age 27.8 12.0
Height (cm) 170.9 10.5
Weight (kg) 66.2 13.5
Bdoy Mass Index (BMI) 22.5 3.2
Dominant Leg Length (cm) 97.8 7.7
Shoe Size (US Men’s) 8.1 2.4
Dominant Femur Length (cm) 51.3 4.4
Torso Length (cm) 42.9 5.0
Wingspan (cm) 173.9 14.7
Shoulder Circumference (cm) 105.8 10.5
Waist Circumference (cm) 86.5 12.1

clustering analysis, we use a total of 11 numerical biometrics
and the self-reporting of ACL reconstructive surgery. Table
I summarizes the biometrics used and sample statistics. We
focus on the hip-worn accelerometers for analysis.

B. Time Series Activity Data

From the trivariate time series signal, created by our triaxial
accelerometers, we extract the vector magnitude of accelera-
tion across three axes, x, y, z.

vt =
√
x2
t + y2t + z2t (1)

This improves the robustness of our data against the orientation
of the sensor and potential errors from differences in the fitting
of sensors on our subjects. Activity data, A = {v1, v2, ..., vT },
is a time series representation of the vector magnitude of
acceleration, over time, sampled at 100hz. Figure 1 visualizes
the time series signal of vector magnitude.

C. Gait Extraction

A gait is comprised of sequential gait cycles separated by
gait events, most notably the heel-strike, and toe-off [2]. Our
data was collected in a controlled environment, and labeled
by our researchers, therefore a simple, rule-based algorithm
is adequate to extract gait cycles. We use a peak-finding
algorithm, PeakUtils, to detect gait events. Figure 2 demon-
strates the system working on our example data. As shown
in Figure 3, we construct a library of candidate subsequences
Ca = {c1, c2, ..., cL} where cl is a gait cycle extracted from

Fig. 1. Example of vector magnitude activity data.

Fig. 2. The detection of gait events for walking sidewalk data.

the peak-indexing algorithm, and a denotes the activity and L
is the number of gait cycles.

Fig. 3. All gait patterns from a single subject walking on the sidewalk.

D. Gait Averaging

Barycenter averaging is used to find the spatiotemporal
sequence that minimizes the distance between a set of time
series. We present a simple barycenter averaging technique
we call gait averaging, shown in Figure 4, which follows two
steps. Given our candidate library Ca = {c1, c2, ..., cL}, the
mean length, µ is found, and each candidate, cl, is interpolated
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to a create a vector, c⃗l, of length µ. Subsequently, the set of
vectors is averaged to obtain a representative value.

gaita =
1

L

L∑
l=1

c⃗l (2)

where c⃗l ∈ Rn. Gait averaging is used again during the
clustering process.

Fig. 4. Gait cycle averaging from the candidate library.

E. Gait Clustering

The goal of a clustering algorithm is to classify unlabelled
data instances into clusters according to their similarity. We
use Dynamic Time Warping (DTW) as a similarity metric for
comparing time series data [12]. Its utility lies in address-
ing misalignment problems encountered when dealing with
sequences that are out-of-phase or have varying durations.
In the context of gait analysis, DTW has been extensively
employed to quantify the spatiotemporal distance between gait
cycles [2] [13]. We use clustering to identify the similarities
present in our subjects’ gait patterns. To cluster gait patterns,
set S = {s1, s2, ..., sN} of gait patterns for each subjectn,
is randomly sampled to create a set M = {m1,m2, ...,mK}
of initial centroids where K is the number of clusters. Each
sn ∈ S is compared by DTW to each mk ∈ M , and
assigned to the cluster Ck that results in the lowest DTW
score. The clustering algorithm minimizes the inertia - the
distance between each instance sn and the centroid mk of its
assigned cluster Ck.

inertia =

N∑
n=1

K∑
k=1

I(sn ∈ Ck)DTW (sn,mk) (3)

Where N is the number of gait patterns in S, K is the
number of clusters, and I takes on the value of 1 if an gait
pattern sn is assigned to a cluster Ck, and a value of 0
otherwise. We use the KMeans algorithm, implemented with
DTW and gait averaging, to iteratively update centroids, and
assign membership of each sn to a cluster Ck, according to
Lloyd’s algorithm [14]. To avoid local minima, we resample

the initial centroids 10 times and return the cluster assignment
and centroid set that resulted in the minimum inertia.

F. Biometrics Clustering

A set B = {b⃗1, b⃗2, ..., b⃗N} is created where each b⃗n is a
vector containing a set of biometrics pertaining to subjectn.
Centroids M = {m⃗1, m⃗2, ..., m⃗K}, are initialized by ran-
domly sampling the set B, K times. B is clustered with inertia
defined as the sum of the Euclidean distances between each
b⃗n and the centroid m⃗k of its assigned cluster Ck.

inertia =

N∑
n=1

K∑
k=1

I(b⃗n ∈ Ck)

√
|b⃗n − m⃗k|2 (4)

where c⃗l, m⃗k ∈ Rn, N is the number of subjects, K is the
number of clusters, and I takes on the value of 1 if b⃗n is a
member of cluster Ck, and a value of 0 otherwise. We again
use the KMeans algorithm, now implemented with Euclidean
distance and simple averaging - represented by equation 2 -
to update centroids, and assign membership of each b⃗n to
a cluster Ck. We resample the initial centroids 5 times and
return the cluster assignment and centroid set that results in
the minimum inertia.

III. ANALYSIS AND RESULTS

A. Two-Way Clustering Similarity

To address the question of biometric impacts on the gait
cycle pattern, we assess the similarity between the assignment
of a subjectn into the same cluster for their gait pattern and
their biometric data. We use the common Adjusted Rand Index
(ARI), to assess the improvement over the random assignment
of clusters.

To assess the probability of achieving a particular result, we
derive the p− value in the following way; we consider each
alternative biometric set within the K number of clusters, and
measure the probability of achieving a result at least as high
as observed. This method is an essential step in our analysis,
but it comes with drawbacks. First, the assessment of the p−
value in this context measures the probability of obtaining a
result higher than the next lowest value, rather than directly
addressing the probability of achieving the specific value of
interest. This distinction should be taken into account when
interpreting the significance of the p − value. Second, it is
important to recognize that small sample sizes pose challenges
in interpreting results in a traditional sense. When the sample
size is limited, the p − value may not accurately reflect the
true probability. While this latter drawback does not impact
the validity of our current results, it could potentially affect
datasets with fewer biometrics available for analysis.

B. Results

Table II is an account of our results for the Walking Sidewalk
- Natural Pace. Here we show the ARI of several select
biometric sets. Table II highlights the significant enhancements
our methods offer compared to random similarity across var-
ious cluster numbers of K. It is worth noting that differences
in the similarity between different K values are expected due
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TABLE II
ARI AND p− value OF SELECT BIOMETRICS

K Clusters

Features K = 2 K = 3 K = 4 K = 5

ACL ***0.18 **0.04 0.00 0.01
Age **0.14 *0.03 -0.03 0.01
Torso Length *0.04 0.01 **0.06 ***0.11
Age, Sex, BMI **0.14 *0.03 0.00 **0.10
Age, Leg Length, Torso Length ***0.18 **0.03 -0.01 **0.09

* = p− value below 10%
** = p− value below 5%
*** = p− value below 1%

to the variation in the number of natural clusters that might
be present depending on the biometrics being evaluated.

C. Biometric Distributions

Table III shows the biometrics distributions for each of the
three clusters. Our results are consistent with the findings of
[10], where they show that the distribution of sex and body
area both have significant inter-cluster distinctions. Age, sex,
ACL reconstructive surgery, and height all provide notable
distinctions between clusters.

TABLE III
K = 3 COMPARISON OF BIOMETRIC DISTRIBUTIONS

Cluster

Features 1 2 3

Sex (male) 33% 33% 45%
Age 32.7 ±17.2 21.6 ±4.7 26.6 ±9.7
Height (cm 173.2 ±10.0 162.0 ±7.0 171.2 ±10.8
Dom. Leg Length (cm) 100.5 ±5.9 94.3 ±5.1 97.1 ±8.4
Weight (kg) 63.0 ±11.2 56.3 ±4.4 68.7 ±14.5
BMI 20.9 ±2.2 21.4 ±0.7 23.3 ±3.4
Torso Length (cm) 42.2 ±4.3 39.5 ±3.7 43.7 ±5.4
Shoe Size (US Mens’) 8.4 ±2.6 6.7 ±3.3 8.2 ±2.2
ACL 0% 0% 22%

avg. ±std.dev.

D. Gait Pathology

Among our self-reported biometrics, we consider previ-
ous ACL reconstructive surgery. Out of the 35 subjects in
our study, 5 reported having undergone ACL reconstructive
surgery. By employing our gait clustering algorithm and
considering two and three clusters (K = 2 and K = 3),
we observe that all subjects who had previous ACL surgery
were assigned to the same cluster, specifically for the Walking
Sidewalk - Natural Pace activity. Notably, this outcome is
not evident in the case of the Walking Treadmill - 2.5 MPH
activity, possibly attributable to the prescribed pace enforced
by the treadmill.

IV. DISCUSSION

Our findings provide clear evidence supporting the intu-
itive notion that gait cycle patterns are influenced, to some

degree, by an individual’s physical attributes. The noticeable
improvement over the random assignment, between geometric
gait pattern clusters and biometric clusters, highlights the
significant role played by these physical characteristics in
shaping gait patterns. Specifically, our results utilizing ACL
reconstruction data underscore the value of gait clustering
through accelerometers in facilitating unobtrusive analysis
of gait abnormalities and monitoring patient recovery. The
sample size of 35 subjects is one area that limits the general-
izability of our work. While this sample size may adequately
demonstrate the efficacy of our methods, a small sample size
makes it difficult to reach conclusive results regarding the
impact of biometrics on gait, and gait abnormality. Further
application of our methods to additional datasets presents an
opportunity to assess the discriminative capabilities of our
methods, for diseases and disorders including Parkinson’s
disease and cerebral palsy, and for post-operative recovery.
This exploration holds promise in evaluating the effectiveness
of our techniques in these contexts and expanding the scope
of their potential applications.
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